Tomography of the Inner Magnetosphere

H. Korth, M. F. Thomsen, W. S. Phillips, and D. J. McComas Los Alamos National Laboratory Los Alamos, New Mexico, USA

K.-H. Glaßmeier Institut für Geophysik der Technischen Universität Braunschweig Braunschweig, Germany

June 1, 2000

Topics

- Tomographic Inversion.
- Description of Parameters.
- Systems of Linear Equations.
- Forward Calculation and Inversion.
- MPA-Data Inversion.
- The Geosynchronous Region.
- The Near-Earth Region.
- Summary.

Tomographic Inversion

- General purpose: Make inferences about physical systems from remotely sensed data.
- Application: Determine neutral hydrogen density distribution in the inner magnetosphere from:
 - 1. Average proton fluxes measured by the Los Alamos geosynchronous spacecraft.
 - 2. Global drift pattern calculated from simple electric and magnetic field models.
 - 3. Assumption: Flux attenuation is caused by charge exchange.

The Database (c.f., Korth et al., JGR, 104, 25047–25061, 1999)

- Three Los Alamos geosynchronous satellites: 1990-095, 1991-080, and 1994-084.
- Magnetospheric Plasma Analyzer (MPA).
- Energy range: $1 \, \mathrm{keV} \lesssim E_\mathrm{p} \lesssim 40 \, \mathrm{keV}$ binned by local time and Kp.
- Spin-averaged fluxes.
- Years included: 1996, 1997, 1998.
- Number of 10-sec. measurements: \sim 1 million / year.

Proton Flux Statistics 1996

from Korth et al., JGR, 104, 25047-25061, 1999.

Global Drift Pattern

- Dipole magnetic field: $B = \frac{c}{r^3}$.
- Volland-Stern electric potential: $U = -\frac{a}{r} br^{\gamma} \sin \varphi$.
- Cross-tail electric field strength b can be parameterized by Kp.
- Drift paths depend on energy, location, and Kp.
- Combination of drift paths leads to a fine mesh of trajectories sampling the inner magnetosphere.
- Only open drift paths are considered.

Charge Exchange

- Process: $H_E^+ + H \rightarrow H_E + H^+$.
- Flux attenuation: $j_{\text{out}} = j_{\text{in}} \exp \left(-\int \alpha \, dt\right)$.
- Discretization.
- Charge exchange loss coefficient: $\alpha = \sigma v n_{\rm H}$.

$$\Rightarrow \sum_{\mathbf{i}} \sigma_{\mathbf{i}} v_{\mathbf{i}} \Delta t_{\mathbf{i}} \quad n_{\mathbf{H}, \mathbf{i}} = \ln \left(\frac{j_{\text{in}}}{j_{\text{out}}} \right)$$

• System of linear equations: $A\vec{m} = \vec{d}$.

Systems of Linear Equations: $A\vec{m} = \vec{d}$

- Inversion requires **regular**, **square** matrix A.
- Force square matrix: $(A^T A) \vec{m} = A^T \vec{d}$. $(\rightarrow \text{pseudo-inverse})$
- Force regularity: $(A^TA + \lambda E) \vec{m} = A^T \vec{d}$. (\rightarrow damping)
- Damping factor λ determines **resolution**.

$$\Rightarrow \qquad \vec{m} = (A^T A + \lambda E)^{-1} A^T \vec{d}$$

Forward Calculation and Inversion

- Neutral hydrogen density: Chamberlain model with Rairden 1986 parameters.
- Forward calculation and inversion:

• Algorithm works!

MPA-Data Inversion

• Inversion of 1998 average proton fluxes:

- Inversion results for other years are similar.
- Inversion results for other shielding factors are similar.
- Large differences from the Chamberlain model in the near-earth region.

The Geosynchronous Region

- Sampled by proton energies of tens of keV.
- Example trajectory: 10 keV @ 6.6 $R_{\rm E}$, 00 LT, Kp = 3.

• Proton drift time: ~ 5 hours.

The Near-Earth Region

- Sampled by proton energies of a few keV.
- Example trajectory: 1 keV @ 6.6 $R_{\rm E}$, 2200 LT, Kp = 3.

• Proton drift time: ~ 3.5 days.

Summary

- Tomographic inversion is a powerful remote-sensing tool.
- Inversion algorithm was successfully tested on a testbed database obtained by forward-modeling drifts through a Chamberlain exosphere.
- MPA-data inversion shows large differences to the Chamberlain model in the near-earth region.
- These differences are due to lower-than-expected losses of lower-energy particles that nominally drift through the inner region.
- Possible implications:
 - 1. Actual hydrogen density may be lower than the Chamberlain model in the inner region predicts.
 - 2. There may be sources within the inner region.
 - 3. Drift paths don't actually penetrate that deeply. (More sophisticated convection models are needed, perhaps including temporal variations.)

